Skip to main content

Experimental Study of Flexible Electrohydrodynamic Conduction Pumping for Electronics Cooling

As modern day electronics develop, electronic devices become smaller, more powerful, and are expected to operate in more diverse configurations.

Published onJan 26, 2020
Experimental Study of Flexible Electrohydrodynamic Conduction Pumping for Electronics Cooling
·

Abstract

As modern day electronics develop, electronic devices become smaller, more powerful, and are expected to operate in more diverse configurations. However, the thermal control systems that help these devices maintain stable operation must advance as well to meet the demands. One such demand is the advent of flexible electronics for wearable technology, medical applications, and biology-inspired mechanisms. This paper presents the design and performance characteristics of a proof of concept for a flexible Electrohydrodynamic (EHD) pump, based on EHD conduction pumping technology in macro- and meso-scales. Unlike mechanical pumps, EHD conduction pumps have no moving parts, can be easily adjusted to the micro-scale, and have been shown to generate and control the flow of refrigerants for electronics cooling applications. However, these pumping devices have only been previously tested in rigid configurations unsuitable for use with flexible electronics. In this work, for the first time, the net flow generated by flexible EHD conduction pumps is measured on a flat-plane and in various bending configurations. In this behavioral characteristics study, the results show that the flexible EHD conduction pumps are capable of generating significant flow velocities in all size scales considered in this study, with and without bending. This study also proves the viability of screen printing as a manufacturing method for these pumps.

Read the full article.

Tobar, N. V., Christidis, P. N., O’Connor, N. J., Talmor, M., & Seyed-Yagoobi, J. (2018). Experimental study of flexible electrohydrodynamic conduction pumping for electronics cooling. ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. https://doi.org/10.1115/ipack2018-8322

*denotes a WPI undergraduate student author

Comments
0
comment

No comments here